您现在的位置:华中数学建模网 >> 信息服务 >> 数学家史 >> 浏览文章
统计学家贝叶斯简介
作者:hbshumo 日期:2007年01月05日 来源:不详 人气:  我要评论(0)
核心提示:
贝叶斯 Thomas Bayes,英国数学家.1702年出生于伦敦,做过神甫.1742年成为英国皇家学会会员.1763年4月7日逝世.贝叶斯在数学方面主要研究概率论.他首先将归纳推理法用于概率论基础理论,并创立了贝叶斯统计理论,对于统计决策函数、统计推断、统计的估算等做出了贡献.1763年发表了这方面的论著,对于现代概率论和数理统计都有很重要的作用.贝叶斯的另一著作《机会的学说概论》发表于1758年.贝叶斯所采用的许多术语被沿用至今. 他对统计推理的主要贡献是使用了"逆概率"这个概念,并把它作为一种普

点击浏览下一页

贝叶斯 Thomas Bayes,英国数学家.1702年出生于伦敦,做过神甫.1742年成为英国皇家学会会员.1763年4月7日逝世.贝叶斯在数学方面主要研究概率论.他首先将归纳推理法用于概率论基础理论,并创立了贝叶斯统计理论,对于统计决策函数、统计推断、统计的估算等做出了贡献.1763年发表了这方面的论著,对于现代概率论和数理统计都有很重要的作用.贝叶斯的另一著作《机会的学说概论》发表于1758年.贝叶斯所采用的许多术语被沿用至今.

他对统计推理的主要贡献是使用了"逆概率"这个概念,并把它作为一种普遍的推理方法提出来。贝叶斯定理原本是概率论中的一个定理,这一定理可用一个数学公式来表达,这个公式就是著名的贝叶斯公式。

贝叶斯公式是他在1763年提出来的:

假定B1,B2,……是某个过程的若干可能的前提,则P(Bi)是人们事先对各前提条件出现可能性大小的估计,称之为验前概率.如果这个过程得到了一个结果A,那么贝叶斯公式提供了我们根据A的出现而对前提条件做出新评价的方法.P(Bi∣A)既是对前提Bi的出现概率的重新认识,称 P(Bi∣A)为验后概率.经过多年的发展与完善,贝叶斯公式以及由此发展起来的一整套理论与方法,已经成为概率统计中的一个冠以“贝叶斯”名字的学派,在自然科学及国民经济的许多领域中有着广泛应用.

seo培训
相关文章列表
网友评论
关于我们 - 联系我们 - 广告服务 - 友情链接 - 网站地图 - 版权声明 - 人才招聘 - 帮助中心